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Please Note: This guide is a continuation from my two previous guides on Understanding
Programming with C++, and An Intro to Game Logic in C++. Those documents are vital to the
foundations of programming and directly correlate to the content covered in this guide. If you
are new to algorithms and programming in general, | recommend that you cover my previous
two guides first as this guide is designed for experienced programmers.

In this guide, you will learn:
1) A fundamental explanation of the Java programming language
2) How to design, analyze, and compare algorithms to solve complex problems
3) Data analysis for space and time in computational complexity
4) Exception handling, Merging and Mergesort structures
5) A deeper dive into Abstract Data Types (ADT), and OOP concepts using Java
6) Explanations on hash tables, searching and sorting with radices, and graph theory

Introduction

“Do I really need a Data Structures & Algorithms course?” With the accelerated rising of
online forums, we see programming discussion groups regarding the importance, and relevance
of Data Structures & Algorithms as a required subject in the field of Computer Science. I've
witnessed numerous online users asking, “do I really need to take a Data Structures &
Algorithms course?” When | see these questions, my initial thought goes back to the film, The
Matrix when Morpheus asks Neo,

“do you want to take the red pill or the blue pill?”

The blue pill lets you stay where you are and you can believe whatever you want to believe, or
you can take the red pill and be shown just how deep the rabbit hole goes. Your introductory
computer science courses will most likely give you nearly all of the essential tools for learning
algorithms and writing good data structures, but a Data Structures & Algorithms course will
significantly mature your problem-solving skills, and prepare you for even more in-depth skills
in software development and machine learning.
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Since you are clearly a more experienced and confident programmer and have decided to read
further in this guide, you have chosen to take the red pill.

Speaking from the standpoint as a Computer Science major who has taken a Data Structures &
Algorithms course, | can confidently elaborate on this frequently growing question that
continues to sprout up online. Not all four-year universities offer the option (or requirement) to
take a Data Structures & Algorithms course but they should. If they do not, you should know
that this is one red flag that differentiates a subpar department from a better department that
is doing its due diligence to give the proper foundations to their CS students. If your intro
courses were anything like mine, the first intro course would have given you the fundamental
concepts of building your own algorithms using Pseudo-Code, learning and implementing
conditional statements, logical expressions, selection control structures, loops, functions,
arrays, data abstraction, recursion, etc. After successfully completing the first introductory
course, you would take an ‘Intro to Computer Science II’ course which, if taught properly, would
take an aggressive leap from procedural programming with C++ into object-oriented
programming with C++. This second introductory course is considerably more in depth with
next-level programming where the emphasis is on Abstract Data Types (ADT), with object-
oriented concepts and implementation using lists, stacks, queues, pushes, pops, binary trees,
simulation, recursion, artificial intelligence, and an introduction to software engineering. These
topics are absolutely crucial to learn prior to taking a data structures and algorithms course, so
the next question is, why does there need to be a course in Data Structures & Algorithms when
you just finished learning all of the essentials? Programmers and other inquiring minds would
likely be shocked to see how many people ask this question within the field of computer
science. This is most likely due to what first appears like repetitious learning, but this is far
from the case. Taking a Data Structures & Algorithms course requires a considerable increase
in understanding how to write better code that runs faster and more efficiently. There’s also a
much bigger jump into discrete mathematics, probability, Boolean algebra, and graph theory.

The next question is, ‘What is Java, and why do we use it?’ Java is a high-level, object-oriented
programming language known for its platform independence, robustness, and portability. It



was developed by James Gosling and his team at Sun Microsystems (later acquired by Oracle
Corporation) and first released in 1995. Java has since become one of the most popular
programming languages for a wide range of applications, from web development to mobile
apps and enterprise-level systems. Java is often referred to as a "write once, run anywhere"
(WORA) language. This is because Java code is compiled into an intermediate bytecode format
that can run on any platform with a Java Virtual Machine (JVM). The JVM acts as a runtime
environment that translates bytecode into machine code specific to the underlying operating
system. Java is also an object-oriented programming (OOP) language making it easier to
structure code and build complex applications. One of the bigger methodologies that
separated my Data Structures & Algorithms course from my introductory comp-sci courses was
the analysis of time and space. IE, time (quicker response) and space (minimal memory usage).
In previous courses as long as any assignments we did met all required tasks and compiled with
no errors or warnings, we were good, and we received full credit for each assignment. In Data
Structures & Algorithms, you must still meet those requirements, and any code that resulted in
correct output but did not run within time and memory constraints would not receive full
credit. These performance and conformance restraints really developed critical thinking skills.

Metacognition in Data Structures & Algorithms:
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about the How and
the Why.

If you read my first technical guide on Understanding Programming in C++ then you would
have seen these two characters that | created known as The Programmer and The Compiler.
Data Structures & Algorithms with Java is more than just writing code that works, it’s about
learning how to write more efficient code that runs better. Everything in Java is object-
oriented, which allows for encapsulation, inheritance, and polymorphism. Java also uses



automatic memory management through a garbage collector. This feature frees developers
from managing memory explicitly, helping to prevent common programming errors like
memory leaks and making the language more reliable. Java emphasizes strong typing and
includes various checks at compile-time and runtime to catch errors early in the development
process. Additionally, exception handling enables better error management and resilience
giving it a means of great robustness and reliability. Another feature is Java’s multi-threading
support. This allows developers to create concurrent applications to make use of modern
multi-core processors and improve performance. Here are several key features that Java
provides as a programming language:

Object-Oriented
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Multi-threaded Dynamic
Auto Resource Mgmt Portability
Vector API Incubator B Secured
—/
/ Features \
Multi-Catch Blocks Interpreted
Modularity Robust

v

Fork Join Framework

These are only some of the features that Java provides, and there’s a great deal more related to
Java’s standard library providing better built-in functions and classes for more efficient tasks
related to file I/O, networking, and data manipulation. Java also has great security that
incorporates a security manager and sandboxing to protect against unauthorized access with
malicious code execution. These features make Java a great option for both beginners and
experienced developers. Java remains one of the most sought-after programming languages in
the market, and especially on the enterprise software development side of the tech industry.
As mentioned at the beginning of this document, | will be delving even deeper than my
previous two documents that only scratched the surface of C++ programming. If you are
already on a much more intermediate level of using programming languages and matured

problem-solving skills, then it’s time to jump deeper with Data Structures & Algorithms with
Java.



Formulating Better Algorithms

As programmers, our greatest focus is to learn how to formulate better algorithms to build
greater software. This fundamental concept in computer science should remain the
cornerstone of every great implementation of code into your projects. Better scalability equals
a better methodologies, better performance, better efficiency, and greater possibilities that
were perhaps not previously conceptualized in the systematic thought process. From my
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previous documents with C++
programming, we already know that
you begin by
understanding/identifying that a
problem exists, followed by breaking
down the problem similar to my
diagram on the left. Our thought
process must align to the type of
algorithms that we create or follow.
However, coming up with a
successful algorithm is only part of
the process. Even with a solid
algorithm in place, we must consider
what we do to take the appropriate
steps to choose the right data
structures. We know that selecting
appropriate data structures can have
a significant impact on the efficiency
of your algorithm. It is paramount to
understand the strengths and
weaknesses of different data

structures (arrays, lists, trees, hash tables, etc.) and use the ones that best match the
requirements of your problem. Ergo, it is important to understand that it all depends on the
type of problems we are trying to solve. There is no One-Size-Fits-All answer to every
algorithmic approach. However, we can break down some commonly used algorithms with
data structures that are frequently applied to software development use cases:

1. Sorting Algorithms:

Quick Sort: A comparison-based sorting algorithm that uses a divide-and-conquer
approach. Efficient for sorting elements in an array or list.
Merge Sort: Similar to a quick sort, merge sort is known for its stability and predictable
performance characteristics.
Bubble Sort: Primarily used for educational purposes and for demonstrating basic
sorting concepts due to its straightforward implementation.

2. Searching Algorithms:
Binary Search: Widely used for swiftly locating a specific element in a sorted array or list.
Linear Search: One of the simplest searching algorithms, linear searches are for small
unordered lists in an array.
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Data Structures:

Arrays: Fundamental for storing collections of data.

Linked Lists: Useful for dynamic data structures.

Disjoint Sets (Union-find): keeps track of elements partitioned in non-overlapping
subsets.

Binary Trees & AVL Trees: Efficient for hierarchical data.

Hash Tables: Excellent for fast key-value lookups.

Graphs: For modeling complex relationships.

Dynamic Programming:
Used to solve problems by breaking them into subproblems. It's particularly useful for
optimization problems.

Graph Algorithms:

Dijkstra's Algorithm: Finds the shortest path in a weighted graph.

Breadth-First Search (BFS) and Depth-First Search (DFS): Fundamental for graph traversal
and for exploring trees.

String Matching Algorithms:
Knuth-Morris-Pratt (KMP) and Rabin-Karp: Linear and hash algorithms used to efficiently
find occurrences of a substring within a larger string.

Numerical Algorithms:

Newton-Raphson: Also referred to as The Newton Method, this algorithm is an iterative
numerical technique for finding approximate roots of real-valued functions.

FFT (Fast Fourier Transform): For efficient computing of the Discrete Fourier Transform
(DFT) and its inverse, signal processing, and data analysis.

Machine Learning Algorithms:
Linear Regression, Decision Trees, Neural Networks and more for various machine
learning tasks.

Compression Algorithms:
LZW, Huffman Coding, and Run-Length Encoding: Three different data compression
algorithms used to reduce the size of data for efficient storage or transmission.

Cryptography Algorithms:

AES, RSA, and SHA: are cryptographic algorithms used for data handling of information
security, including encryption, decryption, digital signatures and data integrity
verification.

Pattern Matching:
Regular Expressions: Commonly abbreviated as ‘Regex’ are powerful and flexible
patterns used for searching, matching and manipulating strings in text.




12. Database Algorithms:
Binary Tree, Hash Indexing, and Query Optimization: For efficient database operations
and management with hierarchical structures, data retrieval and indexing cost-based
analysis.

We see that these examples provide insight into specific areas that programmers can use to
resolve certain tasks in software development. These are also only several examples compared
to the multitude of algorithms that are available for numerous other areas in computer science.
Formulating better algorithms is a complex and iterative process requiring an array of critical-
thinking skills, systematic reason, experience and creativity. Remember, you can improve your
algorithmic design thought process by following a set of standard rules:

1. Understand the Problem:
Before you can design an algorithm, you need a deeper understanding of the problem
you’re trying to solve. Break the problem down into essential components and consider
any potential constraints or requirements by dividing the problem into smaller
subproblems to outline your algorithm’s logic.

2. Analyze Time and Space Complexity:
Strive for algorithms that are both time-efficient (they execute quickly) and space
efficient (they use minimal memory).

3. Use Pseudocode:
Before diving into the code, write pseudocode to outline the logic of your algorithm. A
step by step procedure helps you to understand how the program should behave.

4. Choose the Right Data Structures:
Selecting the appropriate data structures is crucial to algorithm design. The choice of
data structures will greatly impact the efficiency in our algorithm.

5. Consider Different Paradigms:
Exploring different algorithmic paradigms such as greedy algorithms, dynamic
programming, backtracking, and divide-and-conquer.

6. Optimize and Refine:
Once you have a functional algorithm, continuously find ways to optimize it. Making
small changes to the algorithm or data structures can lead to significant performance
improvements.

7. Test Extensively:
Thoroughly test your algorithm with various inputs, including edge cases and worst-case
scenarios, to ensure it behaves correctly and efficiently.



8. Learn from Mistakes:
Expect to make mistakes and encounter challenges along the way. Learning from these
experiences is an essential part of becoming a better algorithm designer.

While these processes are already an essential part of designing, analyzing, and comparing
algorithms, we can jump deeper into understanding how to analyze more efficient algorithms
with computational complexity.

Computational Complexity

Logically speaking, the same problem can frequently be solved with algorithms that differ in
efficiency. The differences between the algorithms may be immaterial for processing a small
number of data items, but these differences grow proportionally with the amount of data. To
compare the efficiency of algorithms, a measure of the degree of difficulty of an algorithm
called Computational Complexity was developed by Juris Hartmanis and Richard E. Stearns.
Computational complexity indicates how much effort is needed to apply an algorithm or how
costly it is. This cost can be measured in various ways and the particular context determines its
meaning. This guide emphasizes the two efficiency criteria: time and space. The factor of time
is far more important than that of space, so efficiency considerations usually focus on the
amount of time elapsed when processing data. However, the most inefficient algorithm run on
a Cray computer can execute much faster than the most efficient algorithm run on a PC, so
runtime is always system-dependent. For example, to compare a hundred algorithms, all of
them would have to be run on the same machine. Furthermore, the results of runtime tests
depend on the language in which a given algorithm is written even if the tests are performed on
the same machine. If programs are compiled, they execute much faster than when they are
interpreted. A program written in C or Pascal may be 20 times faster than the same program
encoded in BASIC or LISP.

To evaluate an algorithm’s efficiency, 40
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bodies of data; any terms which do not substantially change the function’s magnitude should
be eliminated from the function. The resulting function only gives an approximate measure of
efficiency of the original function. However, this approximation is sufficiency close to the
original, especially for a function that processes large quantities of data. The measure of
efficiency is called asymptotic complexity and is used when disregarding certain terms of a
function to express the efficiency of an algorithm or when calculating a function is difficult or
impossible and only approximations can be found. To illustrate the first case, consider the
following formula:

f(n) = n? +100n + log,on + 1000

For small values of n, the last term, 1000, is the largest. When n equals 10, the second (100n)
and last (1000) terms are on equal footing with the other terms making the same contribution
to the function value. When n reaches the value of 100, the first and second terms make the
same contribution to the result. But when n becomes larger than 100, the contribution of the
second term becomes less significant. Ergo, for larger values of n, due to the quadratic growth
of the first term (n?), the value of the function f depends mainly on the value of this first time.
The following data table demonstrates this.

The growth rate of all terms of function f{n)= n*+100n + log,,n + 1000

n fin) n? 100n log,,n 1000
Value Value % Value % Value % Value %
1 1,101 1 0.1 100 9.1 0 00 1,000 90.82
10 2,101 100  4.76 1,000 47.6 1 005 1,000 47.62
100 21,002 10,000  47.6 10,000 47.6 2 0991 1,000 4.76
1,000 1,101,003 1,000,000 90.8 100,000 9.1 3 0.0003 1,000 0.09
10,000 101,001,004 100,000,000  99.0 1,000,000 0.99 4 00 1,000 0.001
100,000 10,010,001,005 10,000,000,000  99.9 10,000,000 0.099 5 00 1,000  0.00

The most commonly used notation for specifying asymptotic complexity, that is, for estimating
the rate of function growth, is the big-O notation introduced in 1894 by Paul Bachmann. Given
two positive-valued functions fand g, consider the following definition:

f(n) is O(g(n)) if there exist positive numbers ¢ and N such that f{(n) < cg(n) for all n = N. This
definition reads: f'is big-O of g if there is a positive number ¢ such that f is not larger than cg
for sufficiently large ns, for all ns larger than some number N. The relationship between fand g
can be expressed by stating either that g(n) is an upper bound on the value of f(n) or that f
grows at most as fast as g. The next question is, what is the practical significance of the data
listed above? It's all related to the same function g(n) = n? and to the same f'(n). For a fixed
g, an infinite number of pairs of c¢s and Ns can be identified for helping to solve for Big-O
notation and the result is checking efficiency of time and space for better algorithms.



In my previous two guides | briefly discussed and provided examples of Abstract Data Types
(ADT) such as lists and stacks, but Java programming courses such as Data Structures &
Algorithms tend to utilize them even more as well as introducing hash tables, concurrency, and
graph algorithms to the mix of algorithmic complexity.

A Deeper Dive into ADTs
As an experienced programmer,
you know that data structures
come in multiple forms within their
own hierarchical structure. These
organization of elements fall under 1

. . Il
linear and non-.llnear data l Dynamic J [ e ]
structures. In linear data

structures, data elements are
organized in a sequential manner, HEY Lists
where each element has a

predecessor and a successor, Stacks
except for the first and last
elements. Examples of linear data
structures include arrays, lists,
stacks, and queues. In non-linear data structures, data elements are not organized
sequentially. Instead, they can have multiple predecessors and successors, forming complex
relationships. Examples of non-linear data structures include trees and graphs. Per my above
diagram, we see that stacks are linear data structures and we use stacks to store and retrieve
data. In most cases when this is done, the stack is very useful when doing so in reverse order.
One application of the stack is in matching delimiters in a program. This is an important
example because matching delimiters is part of any compiler. No program is considered correct
if the delimiters are mismatched. In Java programs, we have the following delimiters:
Parenthesis ’(‘ and ‘)’, square brackets ‘[ and ‘], curly brackets ‘{ and ‘} and comment
delimiters ‘/*" and “*\’. Here are some examples of Java statements that used delimiters

properly:

Queues

a=b+ (c—d) x (e —f);
gl10] = h[i[9]]1 + (j + k) * 1;
while (m < (n[8] + 0)) { p =7; /% initialize p %/ r = 6; }

and these examples are statements in which mismatching occurs:

a=b+ (c—d) x (e -"f));
gl10] = h[i[9]] + j + k) *x 1;
while (m < (n[8] + o) { p = 7; /% initialize p %/ r = 6; }

Do you see what’s happening here? The best way to explain this is a particular delimiter can be
separated from its match by other delimiters; that is, delimiters can be nested. Therefore, a
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particular delimiter is matced up only after all the delimiters following it and preceding its
match have been matched. For example, in the condition of the loop

while (m < (n[8] + 0))

the first opening parenthesis must be matched with the last closing parenthesis, but this is
done only after the second opening parenthesis is matched with the next to last closing
parenthesis; this, in turn, is done after the opening square bracket is matched with the closing
bracket. The delimiter matching algorithm reads a character from a Java program and stores it
on a stack if it is an opening delimiter. If a closing delimiter is found, the delimiter is compared
to a delimiter popped off the stack. If they match, processing continues. If not, processing
discontinues by signaling an error. The processing of the Java program ends successfully after
the end of the program is reached and the stack is empty. Here is the algorithm for further
reference and understanding:

delimiterMaching (file)
read character ch from file;
while notendof file
if ch is(Y,’[Y, or ‘{V
push (ch) ;
else if ch is /'
read the next character;
if this characteris “*'
push (ch) ;
else ch = thecharacter read in;
continue; //go to the beginning of the loop;
else 1if chis’)’,’1’, or ‘}'/
if ch and popped off delimiter do not match
failure;
else 1f chis "*/
read the next character;
if this characteris * /' and popped off delimiter is not /'
failure;
else ch = thecharacter read in;

push back the popped off delimiter;
continue;

// else ignore other characters;

read next character ch from file;
if stackis empty

success;
else failure;

11



Per the above algorithm, you would get the following result when applying this statement:
s=t[5]tu/(v*(wty))

Stack Nonblank Character Read Input Left
empty s=t[5]+u/(v*¥(w+y)),
empty S =t[S]+u/(v*¥(w+y)):
empty = t[S]+u/(v*(w+y)),
empty t [S]+u/(v*(w+Yy));

[ [ S5l+u/(v*(w+y);

[ 5 I+u/(v*(w+y));
empty | +u/(v*¥(w+y));
empty + u/ (v (w+y));
empty u [ (v*(W+Y));
empty / (vV*(W+y)):

( ( VE(W+Y));

( v (W +y));

( (W +y)):

(

( ( W +Y));

(

( w +Y))

(

( + y));

(

( y ))s

( ) );
empty ) ;
empty ;

The way this works is the first column shows the contents of the stack at the end of the loop
before the next character is input from the program file. The first line shows the initial
situation in the file and on the stack. Variable c# is initialized to the first character of the file,
letter s, and in the first iteration of the loop, the character is simply ignored. This situation is
shown in the second row. Then, the next character, ‘equal sign’ is read. Itis also ignored and
so is the letter ¢. After reading the left bracket, the bracket is pushed onto the stack so that the
stack now has one element, the left bracket. Reading digit 5 does not change the stack, but
after the right bracket becomes the value of c/, the topmost element is popped off the stack
and compared with ch. Because the popped off element (left bracket) matches ch (right
bracket), the processing of input continues. After reading and discarding the letter u, a slash is
read and the algorithm checks whether it is part of the comment delimiter by reading the next
character, a left parenthesis. Because the character read in is not an asterisk, the slash is not
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the beginning of a comment, so c/ is set to left parenthesis. In the next iteration, this
parenthesis is pushed onto the stack and processing continues. After reading the last
character, a semicolon, the loop is exited and the stack is checked. Because it is empty with no
unmatched delimiters left, success is reached.

This now brings me to the subject of First-Class ADTs. As we know, ADTs help us manage the
complexity of creating client programs that address the needs of increasingly more complicated
applications by building increasingly powerful layers of abstraction. Throughout this process, it
is often natural to want to use the data types in our programs in the same way that we use
primitive types such as int or float. At this point in my guide, we consider the pitfalls that
arise when we try to do so. The next question is, what is a first-class abstract data type (ADT)?
A first-class data type (also referred to as a first-class object) is a concept in programming
languages that denotes the level of support and flexibility a programming language provides for
a particular data type or entity. First-class data types can be used the same way that we use
primitive data types which means they also follow the same characteristics:

e Storage

e Assignment

e Passing as Arguments
e Return Value

e Equality

e Operations

e Encapsulation

If a first-class data type is accessed only through an interface, it is a first-class ADT. As a
generalization, Java does not support first-class data types because its primitive (built-in) data-
types are fundamentally different from its class (user-defined) data types. Java also provides
direct language support for the String type, making it different from both primitive types and
other class types. First, arithmetic operators such as + and * are defined for primitive data
types (and + is defined for the String type), but we cannot arrange to write @ + b when a and b
are objects of a user-defined type. Second, we can define methods for class types and extend
them, but we cannot do either for primitive types. Third, the meaning of a = b depends on
whether or not @ and b are primitive types: if they are primitive a gets a copy of the value of b;
if not, a gets a copy of a reference to b. The same holds true of method parameters and return
values. As with other definitions related to data types, we cannot be precise in defining the
concept of first-class types without straying into deep issues relating to semantics of
operations. It is one thing to expect that we are able to write a = b when a and b are objects
from a user-defined class, but it is quite another thing to precisely specify what we mean by
that statement. Ideally, we would envision all data types having some universal set of well-
defined methods. An example is the convention that all Java objects havea toString
method. In practice, each data type is characterized by its own set of methods. This difference
between data types in itself militates against a precise definition of the concept of first-class
data types, because it implies that we should provide definitions for every operation that is
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defined for built-in types, which we rarely do. Most often, only a few crucial operations are of
real importance to us, and we try to use those operations for our own data types in the same
way as we do for built-in types.

To illustrate this, we consider an ADT for the complex-number abstraction. Our goal is to be
able to write programs that perform algebraic operations on complex numbers using
operations defined in the ADT. We would like to declare and initialize complex numbers and
use arithmetic operations on complex numbers to perform various computations involving
them. As mentioned above, we will not be able to write clients that use the arithmetic
operators * and + on complex numbers; we will still have to define and use appropriate
methods for these operations. Regardless, it is natural to want to compute with complex
numbers in much the same way as we compute with real numbers or integers. We now briefly
consider a few mathematical properties of complex numbers. The number of i = V=1 isan
imaginary number. Although, vV—1 is meaningless as a real number, we name it i and perform
algebraic manipulations with i, replacing i? with —1 whenever it appears. A complex number
consists of two parts, real and imaginary—complex numbers can be written in the form a + bi
where a and b are real complex numbers. To multiply complex numbers, we apply the usual
algebraic rules, replacing i? with —1 whenever it appears. For example:

(a + bi)(c + di) = ac + bci + adi + bdi? = (ac — bd) + (ad + bc)i

The real or imaginary parts might cancel out (have the value 0) when we perform a complex
multiplication. For example:

A-DA-)=1—i—i+ 2= —2i
(140)* =42 = —4,
(1+0)® =16

Scaling the preceding equation by dividing through by 16 = (\/5)8, we find that

o) -

S|— —_ =

V2 2

In general, there are many complex numbers that evaluate to 1 when raised to a power. These

are the complex roots of unity. For each N, there are exactly N complex numbers z with zV =
1. The formulas

<2nk>+_ ] <2nk>
cos | — Esin{—
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Fork=0,1, ..., N — 1 are easily shown to have this property. For example, taking k=17 and N =
8 in this formula gives the particular eighth root of unity that we just discovered. As an
example of a client, consider the task of writing a program that computes each of the Nth roots
of unity for any given N and checks the computation by raising each of them to the Nth power.

So, what does all of this mean? As we continue our deep dive into ADTs we consider this
process as part of the complex roots of unity. Let’s look at some code to better illustrate the
above mathematical formulas using a complex number driver (roots of unity). The following
program performs a computation on complex numbers using an ADT that allows it to compute
directly with the abstraction of interest by using objects of Complex type. This code will check
the ADT implementation by computing the powers of the roots of unity.

public class RootsOfUnity {
public static void main(String[] args) {

int N = Integer.parselnt(args[0]);

Out.println(N + "roots of unity”);

for (int k = 0; k < N; k++) {
double x = Math.cos(2.0 x Math.PI *x k/N),
double y = Math.sin(2.0 *x Math.PI *x k/N);
Complex t = new Complex(x, y);
Out.println(k + ": " + t);
Complex z = (Complex) t.clone();
for (int j = 0; j <N — 1; j++) z.mult(t);
Out.println(" " + z);

}

With an appropriate toString method this code will print the following table:

1.000 0.000 1.000 0.000 This table givels the Outpl,,l'F that_would‘be prodl.Jced when
0.707 0.707 1.000 0.000 !nvolked Wlth. a.oqu 8 |n|a L(;m;x (Vim) t(lermlnalwh|tt1j an
0.000 1.000 1.000 0.000 'MP ementation of the overloaded toString method.

-0.707 0.707 1.000 0.000
-1.000 0.000 1.000 0.000
-0.707 -0.707 1.000 0.000
0.000 -1.000 1.000 0.000
7 0.707 -0.707 1.000 0.000

Next, we could consider how to arrange and multiply two
complex numbers. Ideally, we would want to write
expressions like @ = b * ¢; where q, b, and c are all of type
Complex, but as | mentioned earlier, Java does not support
this style of programming. One idea is to try to mimic this
style by writing a static method that takes two Comp1ex objects as parameters and returns a
Complex, so that we can write:

a = Complex.mult(b, c); Another approach is to use a single-parameter class method mult
that we use to multiply a Complex object by the given parameter. This approach mimics the
use of expressions like a *= b with primitive types. It's essential to strike a balance when using
complex objects as parameters. Overuse of complex objects can lead to overly complex and
tightly coupled code, which can be challenging to maintain. Proper class design and careful

ok wnNEFE O
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consideration of the relationships between objects are crucial to reaping the benefits of using
complex objects as parameters in Java.

As a programmer who’s written data structures and formulated illuminating algorithms to light
the path, you understand the important advantages that linked lists offer over linear data
structures. We know that unlike arrays, linked lists are dynamic data structures, resizable at
runtime that allow easy implementation for insertion and deletion operations. Let’s consider a
few complex ADTs in Java and how they are implemented and utilized in the Java programming
language. A singly linked list is a dynamic data structure where each element (node) contains a
value and a reference to the next element in the list. Here is an implemented example of a
singly linked list:

public class SinglylLinkedList<T> {
private Node<T> head;

private static class Node<T> {
T data;
Node<T> next;

Node(T data) {
this.data
this.next

data;
null;

}

public void add(T data) {
Node<T> newNode = new Node<>(data);
if (head == null) {
head = newNode;

} else {
Node<T> current = head;
while (current.next '= null) {

current = current.next;
b

current.next = newNode;
}
public void display() {

Node<T> current head;
while (current != null) {
System.out.print(current.data + " —> ");

current = current.next;

b
System.out.println("null");
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So, what is happening in this above code example? Let’s take a look at a visual representation

to better understand this process.

e The SinglyLinkedList class represents the ADT and contains a reference to the head of

the list.

e The Node inner class defines the elements of the list, which include the data and a

reference to the next node.

e The add method appends a new element to the end of the list.
e The display method is used to print the elements of the list for demonstration.

Data Link
Head l

Tail

L |

£

Node

42 NULL"——J

(End of the list)

This collection of nodes are kept in random memory, and a node has two fields:

1. Saved data at a specific address
2. A pointer to the next node in the memory

As we can see, the null pointer is contained in the list’s last node. Now, you’ve seen my
example of a singly linked list, but what about a doubly linked list to maintain bidirectional links
between nodes for easy traversal in both directions? We can create that as well with some

slight modifications from our SinglyLinkedList!

public class DoublylLinkedList<T> {
private Node<T> head;
private Node<T> tail;

private static class Node<T> {
T data;
Node<T> prev;
Node<T> next;

Node(T data) {

this.data = data;
this.prev = null;
this.next = null;

}

public void addFirst(T data) {
Node<T> newNode = new Node<>(data);
if (isEmpty()) {
head = newNode;
tail = newNode;
} else {
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newNode.next = head;
head.prev = newNode;
head = newNode;

}

public void addLast(T data) {
Node<T> newNode = new Node<>(data);
if (isEmpty()) {
head = newNode;
tail newNode;
} else {
newNode.prev = tail;
tail.next = newNode;
tail = newNode;

}

public void remove(T data) {
Node<T> current = head;

while (current !'= null) {
if (current.data.equals(data)) {
if (current == head) {

head = current.next;
if (head '= null) {

head.prev = null;
}

} else if (current == tail) {
tail = current.prev;
tail.next = null;

} else {
current.prev.next
current.next.prev

current.next;
current.prev;

}
return;

by

current = current.next;

}

public void display() {
Node<T> current = head;
while (current !'= null) {
System.out.print(current.data + " <—> ");
current = current.next;
b
System.out.println("null");

public boolean isEmpty() {
return head == null;
}
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Do you see what is happening in the code? Here are the details covering the doubly linked list
that | just created:

e The DoublyLinkedlList class represents the ADT for a doubly linked list.

e The Node inner class defines the elements of the list, including the data and references
to the previous and next nodes.

e addFirst adds an element to the beginning of the list, updating the head.

e addLast adds an element to the end of the list, updating the tail.

e remove allows you to remove a specific element from the list by searching for its value
and adjusting the previous and next references of adjacent nodes.

e display prints the elements of the list from the head to the tail.

e isEmpty checks if the list is empty by verifying if the head is null.

This custom doubly linked list ADT allows us to manage a list of elements with efficient insertion
and deletion at both the beginning and end of the list. We can also implement a binary search
tree (BST) in Java with the following code:

public class BinarySearchTree<T extends Comparable<T>> {
private TreeNode<T> ;

private static class TreeNode<T> {
T data;
TreeNode<T> ;
TreeNode<T> ;

TreeNode(T data) {
this.data data;
this.left null;
this.right = null;

}

public void insert(T data) {
= insertRecursive(root, data);
}

private TreeNode<T> insertRecursive(TreeNode<T> root, T data) {
if (root == null) {
return new TreeNode<>(data);
b

if (data.compareTo(root.data) < 0) {
root.left = insertRecursive(root.left, data);
} else if (data.compareTo(root.data) > @) {
root.right = insertRecursive(root.right, data);
¥

return ;
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public void inOrderTraversal() {

inOrderTraversalRecursive(root);

private void inOrderTraversalRecursive(TreeNode<T> root) {

if (root !'= null) {
inOrderTraversalRecursive(root. left);
System.out.print(root.data + " ");
inOrderTraversalRecursive(root.right);

Here’s an explanation of how the above binary search tree works:

The BinarySearchTree class represents the ADT and contains a reference to the root of
the tree.

The TreeNode inner class defines the elements of the tree, including the data and
references to the left and right children.

The insert method inserts a new element into the BST while maintaining the binary
search tree property.

The inOrderTraversal method performs an in-order traversal of the tree, which prints
the elements in ascending order.

A visual representation from my lab notes about BSTs:

S-node is root of tree @
E-node is parent of A-node (left)

and R-node (right) @ @

E-node and all children nodes is a

subtree @ @

E-node has key = E, value =6

All nodes in subtree rooted at A @ @
have keys smaller than E

All nodes in subtree rooted at R have keys larger than E

Compared to what real-world assignments/projects require in software development for large-
scale applications these are just simplified implementations from my COS 265 labs to illustrate
the concepts of linked lists and binary search trees as ADTs in Java.

So, what has this deeper dive into ADTs taught us? In essence, we’ve come to know ADTSs as
the cornerstone of Java programming that promotes good software engineering practices,
fosters code reusability, simplifies code development and maintenance, and enables efficient
and reliable data management within your Java applications. They provide a structured and
organized way to work with data, leading to more robust and maintainable software.
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Union-Find Algorithms

Suppose that we are given a sequence of pairs of integers, where each integer represents an
object of some type and we are to interpret the pair p-g as meaning “p is connected to g.”
Given a set of N elements that support two operations:

1. Connection command: directly connect two elements with an edge

2. Connection query: is there a path connecting two elements?
We assume the relation “is connected to” to be transitive: If p is connected to ¢, and ¢ is
connected to 7, then p is connected to ». Our goal is to write a program to filter out extraneous
pairs from the set: When the program inputs a pair p-g, it should output the pair only if the
pairs it has seen to that point do not imply that p is connected to

q. If the previous pairs do imply that p is connected to g, then 4-3 4-3
. . 4-9 4-9
the program should ignore p-q and should proceed to input the 8.0 8.0
next pair. The following integer example is a dynamic 3-8 3-8
connectivity example. Given a sequence of pairs of intehers
. . . 6-5 6-5
representing connections between objects (left column), the task
L . . . . 2-3 2-3
of a connectivity algorithm is to output those pairs that provide 2.9 9-3-4-9
new connections (center column). For example, the pair 2-9 is cg 5.9
not part of the output because the connection 2-3-4-9 is implied 5.0 5.0
by previous connections. The goal is to devise a program that 6-1 6-1
can remember sufficient information about the pairs it has seen 5.7 5.7
to be able to decide whether or not a new pair of objects is 0-2 0-8-4-3-2
connected. Informally, we refer to the task of designing such a 5.7 5.7

method as the dynamic connectivity problem. This problem

arises in a large array of important applications. We can briefly consider some examples to
indicate the fundamental nature of the problem. For
example, these integers may represent computers in a
large network, and the pairs might represent connections
in a network. Then, the program may be used to
determine whether we need to establish a new direct
connection for p and g to be able to communicate or
whether we could use existing connections to set up a
communications path. In this type of application, we may
need to process millions of points and billions of
connections, or more. A problem like this will be nearly
impossible to solve for such an application without a very
efficient algorithm. Similarly, the integers may represent
contact points in an electrical network, and the pairs may
represent wires connecting the points. In this case, we could use our program to find a way to
connect all the points without any extraneous connections (if that’s possible). There is no
guarantee that the edges in the list will suffice to connect all the points—most certainly, it will
be determined whether or not they could be a prime application of our program. Now, let’s
consider this program from a different perspective on a larger scale.

connect(4, 3)
connect(3, 8)
connect(6, 5)
connect (9, 4)
connect(2, 1)
isConnected(2, 9) // ?
isConnected(5, 7) // ?
connect(5, 0)
connect (7, 2)
connect(6, 1)
connect(1l, 0)
isConnected(5, 7) // ?
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The following maze is a representation of a

larger connectivity example. The objects in a

connectivity problem may represent

connection points, and the pairs might be

connections between them. As indicated in

this example, they may represent wires

connecting buildings in a city or components

in a computer chip. This graphical

representation makes it possible for a human

to spot nodes that are not connected, but the

algorithm has to work with only the pairs of

integers that it’s given. At closer observation

of this larger example, can you see a path

connecting the cyan and pink elements?

Examining this figure gives us an appreciation

of the difficulty of the connectivity problem:

How can we arrange to tell quickly whether any given two points in such a network are
connected? Still, another example arises in certain programming environments where it is
possible to declare two variable names as equivalent. The problem is to be able to determine
whether two given names are equivalent, after a sequence of such declarations. Applications
such as the variable-name-equivalence problem described above require that we associate an
integer with each distinct variable name.

The first step in the process of developing an efficient algorithm to solve a given problem is to
implement a simple algorithm that solves the problem. If we need to solve a few particular
instances of a problem that turn out to be easy, then the simple implementation may finish the
job for us. If a more sophisticated algorithm is called for, then the simple implementation
provides us with a correctness check for small cases and a baseline for evaluating performance
characteristics. We always care about efficiency, but our primary concern in developing the
first program that we write to solve a problem is to make sure that the program is a correct
solution to the problem. The first idea that might come to mind is to somehow save all of the
input pairs, then write a function to pass through them to try and discover whether the next
pair of objects is connected. In this guide, | will use a different approach. First, the number of
pairs may be sufficiently large to impede our preserving them all in memory in practical
applications. Second, and more to the point, no simple method immediately suggests itself for
determining whether two objects are connected from the set of all the connections, even if we
could save them all. As a general rule of thought, we consider modeling the elements.
Applications involve manipulating elements of all types:

e pixelsin a digital photo

e computersin a network

e friends in a social network

e transistors in a computer chip

e elements in a mathematical set

22



e variable names in a Fortran program
e metallic sites in a composite system
e modeling the elements

When programming, it is convenient to name elements () to N-1.
e use integers as array index
e suppress details not relevant to union-find

We model "is connected to" as an equivalence relation, which is reflexive, symmetric, and
transitive.

Reflexive

pis connected to p

Symmetric
if p is connected to ¢, then ¢ is connected to p

Transitive
if p is connected to g and g is connected to r, then p is connected to r

When considering connected exponents, we're only interested in the maximal set of elements
that are mutually connected. Let’s look at 3 disjoint sets per connected components.

OO OO
{0} {1,4,5} {2,3,6,7}
Example: ° ° ° ‘

union (p, q)

replaces sets containing elements p and q with their union.
Find (p)

In which set is element p?

{0} {1,4,5} {2,3,6,7} = {0} {1,2,3,4,5,6,7}

union(2,5)
find(5) != find(6)
union(2, 5) // 3 disjoint sets -> 2 disjoint sets
find(5) == find(6)
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Let’s try a Quick-find solution to a connectivity problem. This program takes an integer N from
the command line, reads a sequence of pairs of integers, interprets the pair p g to mean
“connect object p to object q,” and prints the pairs that represent objects that are not yet
connected. The program maintains the array id such that id[p] and id[g] are equal if and only
if p and g are connected.

public class QuickF {
public static void main(String[] args) {
int N = Integer.parselnt(args[0]);
int id[] = new int[N];
for (int i = 0; i < N; i++) id[i] = 1i;

for (In.init(); !In.empty();) {
int p = In.getInt(), g = In.getInt();
int t = idl[pl;
if (t == id[ql) ;
for (int i = @0; i < N; i++)
if (id[i] == t) id[i] = id[ql;

1n n

Out.println(" ” + p + +q);

This method is simpler because for this particular example we are solving a less difficult
problem, more efficiently because it does not require saving all of the pairs. They all use an
array of integers—one corresponding to each object—to hold the requisite information to be
able to implement union and find. In the above example, | am using elementary arrays in their
simplest form: | create an array that can hold N integers by writing int id[] = new int[N];

then | refer to the ith integer in the array by writing id[i], = new int[N] for 0 < i <
1000.

Now, if | replace the body of the for loop in the above QuickF function, by this code | could
have a program that meets the same specifications but does less computation for the union
operation at the expense of more computation for the find operation. The for loops and
subsequent i f statement in this code specify the necessary and sufficient conditions on the id
array for p and g to be connected. The assignment statement id[i] = j implements the
union operation.

int i, j, p = In.getInt(), g = In.getInt();

for (i = p; i != id[il; 1 = id[i]);
for (j = q; j '= id[jl; j = id[j1);
if (i == j) ;
id[i] = j;
Out.printtn(" " + p + " " + q);

This is an implementation of the union and find operations that comprise the quick-union
algorithm to solve the connectivity problem.
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Exception Handling

Exception handling in Java has been a fundamental part of the language since its inception in
1995. Java introduced a robust exception-handling mechanism based on the concepts of try,
catch, and throw to handle exceptional situations or errors that could occur during program
execution. This approach was designed to provide a safer and more structured way to handle
errors compared to some other programming languages that relied on error codes or other
mechanisms. Exception handling has been a significant step towards writing more reliable and
maintainable code. It allows developers to separate the normal flow of program execution
from error handling, making it easier to identify and address issues in our code. This feature
continues to be a key aspect of Java development. Here are the Hierarchy of Exception classes:

Object
v
Throwable
v \ 4
Error Exception
— StackOverFlowError Unchecked Checked
Exception Exception
. I0Exception
etc v FileNotFoundException
RuntimeException ClassNotFoundException
—Arithmetic Exception .
etc

—NumberNotFoundException
—NullPointerException
—ArraylndexOutOfBoundsException

etc

We all know exceptions are unexpected events that occur during the execution of a program.
An exception can be the result of an error condition or simply an unanticipated input. In any
case, in an object-oriented language, such as Java, exceptions can be thought of as being
objects themselves. Checked exceptions are a type of exception that the compiler requires you
to handle explicitly. These exceptions are associated with conditions that are generally outside
the control of the program, and they typically represent errors or exceptional situations that
might occur during the execution of your program. Checked exceptions are checked by the
compiler at compile-time, and if not properly handled, they will result in a compilation error.
Unchecked exceptions, also known as runtime exceptions, are exceptions that do not require
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explicit handling at compile time. Unlike checked exceptions, which the compiler enforces you
to either catch or declare, unchecked exceptions are not checked by the compiler at compile
time. Instead, they can occur at runtime and are typically the result of programming errors or
unexpected conditions during program execution. In Java, exceptions are objects that are
thrown by code that encounter some sort of unexpected condition. They can also be thrown by
the Java run-time environment should it encounter an unexpected condition, like running out
of object memory. A thrown exception is caught by other code that "handles" the exception
somehow, or the program is terminated unexpectedly. For example, if we try to delete the
tenth element from a sequence that has only five elements, the code may throw a
BoundaryViolationException. This action could be done, for example, using the
following code fragment:

if (insertIndex >= A.length) {
throw new BoundaryViolationException("No element at index
insertIndex);

}

+

It is typically convenient to instantiate an exception object at the time the exception has to be
thrown. Thus, a throw statement is generally written as follows:

throw new exception_type(param@, paraml, ..., paramn-1);

where exception type isthe type of the exception and the param's form the list of
parameters for a constructor for this exception. Exceptions are also thrown by the Java run-
time environment itself. For example, the counterpart to the example above is
ArrayIndexOutOfBoundsException. If we have a six-element array and ask for the
ninth element, then this exception will be thrown by the Java run-time system. When it comes
to the throw clause, it is appropriate to specify when a method is declared for the exceptions it
might throw. This convention has both a functional and courteous purpose. For one, it lets
users know what to expect. It also lets the Java compiler know which exceptions to prepare for.
The following is an example of such a method definition:

public void goShopping() throws ShoppinglListTooSmallException,
OutOfMoneyException {

//method body...
I

By specifying all the exceptions that might be thrown by a method, we prepare others to be
able to handle all of the exceptional cases that might arise from using this method. Another
benefit of declaring exceptions is that we do not need to catch those exceptions in our method.
Sometimes this is appropriate in the case where other code is responsible for causing the
circumstances leading up to the exception.
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The following illustrates an exception that is "passed through":

public void getReadyForClass() throws ShoppinglListTooSmallException,
OutOfMoneyException {

goShopping(); //no need to try or catch the exceptions

makeCookiesForTA();

Do you see what’s happening in this example? We pass the parameter goshopping ()
because it may throw therefore, getReadyForClass () will just pass these along. A
function can declare that it throws as many exceptions as it likes. Such a listing can be
simplified somewhat if all exceptions that can be thrown are subclasses of the same exception.
In this case, we only have to declare that a method throws the appropriate superclass.

Java defines classes Exception and Error as subclasses of Throwable, which denotes any
object that can be thrown and caught. Also, it defines class RuntimeException asa
subclass of Exception. The Error class is used for abnormal conditions occurring in the
run-time environment, such as running out of memory. Errors can be caught, but they probably
should not be, because they usually signal problems that cannot be handled gracefully. An
error message or a sudden program termination is about as much grace as we can expect. The
Exception class is the root of the exception hierarchy. Specialized exceptions such as
BoundaryViolationException should be defined by subclassing from either
ExceptionorRuntimeException. Note that exceptions that are not subclasses of
RuntimeException must be declared in the throws clause of any method that can throw
them.

When an exception is thrown, it must be caught or the program will terminate. In any particular
method, an exception in that method can be passed through to the calling method or it can be
caught in that method. When an exception is caught, it can be analyzed and dealt with. The
general methodology for dealing with exceptions is to "try" to execute some fragment of code
that might throw an exception. If it does throw an exception, then that exception is caught by
having the flow of control jump to a predefined catch block that contains the code dealing with
the exception. The general syntax for a try-catch block in Java is as follows:

try

main_block_of statements

catch (exception type, variable,)
block of statements,

catch (exception type, variable;)
block _of statements,

finally

block _of statements,
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where there must be at least one catch part, but the finally part is optional. Each
exception type isthe type of some exception, and each variable is a valid Java variable
name. The Java run-time environment begins performing a try-catch block such as this by
executing the block of statements, main_block_of statements. If this execution generates no
exceptions, then the flow of control continues with the first statement after the last line of the
entire try-catch block, unless it includes an optional finally part. The finally part, if it exists, is
executed regardless of whether any exceptions are thrown or caught. Thus, in this case if no
exception is thrown, execution progresses through the try-catch block, jumps to the finally
part, and then continues with the first statement after the last line of the try-catch block.

If, on the other hand, the block, main_block of statements, generates an exception, then
execution in the try-catch block terminates at that point and execution jumps to the catch block
whose exception type most closely matches the exception thrown. The variable for this
catch statement references the exception object itself, which can be used in the block of the
matching catch statement. Once execution of that catch block completes, control flow is passed
to the optional finally block, if it exists, or immediately to the first statement after the last line
of the entire try-catch block if there is no finally block. Otherwise, if there is no catch block
matching the exception thrown, then control is passed to the optional finally block, if it exists,
and then the exception is thrown back to the calling method.

Let’s consider the following example code:

int index = Integer.MAX_VALUE;

try {
string toBuy = shoppinglList[index];
I

catch (ArrayIndexOutOfBoundsException aio obx) {
system.out.println ("The index " +index+ " is outside
the array.");

}

Do you understand what this code is doing? Essentially, if this code does not catch a thrown
exception, the flow of control will immediately exit the method and return to the code that
called our method. At that point, the Java run-time environment will look again for a catch
block. If there is no catch block in the code that called this method, the flow of control will
jump to the code that called this, and so on. Eventually, if no code catches the exception, the
Java run-time system (the origin of our program’s flow of control) will catch the exception. At
this point, an error message and a stack trace are printed to the screen and the program is
terminated. The following is an actual run-time error message that I've received before:

java.lang.NullPointerException: Returned a null locator
at java.awt.Component.handleEvent (Component.java:621)
at java.awt.Component.postEvent (Component.java:542)

at java.awt.Component.postEvent (Component.java:539)
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at sun.awt.motif.MButtonPeer.action (MButtonPeer.java:27)
at java.lang.Thread.run (Thread.java)

While this error message is not directly related to the above exception example, it still provides
a great insight into the topic at hand. Once an exception is caught, there are several things a
programmer might want to do. One possibility is to print out an error message and terminate
the program. There are also some interesting cases in which the best way to handle an
exception is to ignore it (this can be done by having an empty catch block). In this scenario,
typically what we do is ignore the exceptions. For example, when the programmer does not
care whether there was an exception or not. Another legitimate way of handling exceptions is
to create and throw another exception, possibly one that specifies the exceptional condition
more precisely. The following is an example of this approach:

catch (ArrayIndexOutOfBoundsException aio obx) {
throw new ShoppinglListTooSmallException(

"Product index is not in the shopping list");
I

Perhaps what we should consider as the best way to handle an exception (although not always
possible) is to find the problem, fix it, and continue execution. As a recap on exception
handling, we emphasize this fundamental concept because of these key features of better
programming practices:

1. Resource Management
Ensuring that files, network/database connections are properly closed, preventing
resource leaks, and managing system resources more efficiently.

2. Program Robustness
Handles vast amounts of inputs and conditions without failure, making software more
reliable and stable.

3. Error Resilience
Instead of crashing or abruptly terminating, the program can catch and manage these
exceptions, ensuring a better user experience, and preventing data loss or corruption in
output.

4. Modularity and Code Organization
promotes cleaner code by separating error-handling logic from the main program flow.

5. Customization

Custom exception classes represent application-specific errors, making it easier to
differentiate between different error scenarios.
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Merging & Mergesorts

In this section of my guide, | examine a family of sorting algorithms based on a complementary
process, merging—combining two ordered files to make one larger ordered file. Merging is the
basis for a straightforward divide-and-conquer sorting algorithm and for a bottom-up
counterpart, both of which are fairly easy to implement. Selection and merging are
complementary operations in the sense that the selection splits a file into two independent files
to make one file. The contrast between these operations also becomes apparent when we
apply the divide-and-conquer paradigm to create a sorting method. We can rearrange the file
such that, when two parts are sorted, the whole file is ordered. Alternatively, we can break the
file into two parts to be sorted and then combine the ordered parts to make the whole ordered
file. In this portion of my guide, we will look at mergesort, which is quicksort’s complement in
that it consists of two recursive calls followed by a merging procedure. One of mergesort’s
most attractive properties is that it sorts a file of N elements in time proportional to N log N, no
matter what the input. As such, consider the following proposition:

Merge sort uses < N 1g N compares to sort an array of length N.

Pf sketch: The number compares C(N) to merge sort an array of length N satisfies the
recurrence.

C(N) < C(IN/2]) + C(ILN/2]) + N_for N > 1, with C(1) = 0

sort l?a?t half sort ri?g;?lt half ~ €r8e

We solve for the recurrence when N is a power of 2 (result holds for all N, analysis cleaner in
this case):

D(N) = 2D(N/2) + N, for N > 1, with D(1) =0
We also consider for divide-and-conquer recurrence with the following proposition:

If D(N) satisfies D(N) = 2D(N/2) + N for N > 1,
with D(1) = 0,then D(N) = Nlg N

Pf by picture (assuming N is a power of 2):

D(N) 1(N/1) =N

D(N/2) D(N/2) 2(N/2) =N

D(N/4) D(N/4) D(N/4) D(N/4) 4(N/4) =N

D(N/8)  D(N/8)  D(N/8) D(N/8)  D(N/8)  D(N/8)  D(N/8)  D(N/8) 8(N/8) =N
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Height of binary tree: 1lg N
Recurrence: D(N) = N1gN

We also consider the following proposition with a merge sort in a number of array accesses:
Merge sort uses < 6N Ig N array accesses to sort an array of length N.
Pf sketch: The number of array accesses A(N) satisfies the recurrence:

A(N) < A([N/2]) + A(|N/2]) + 6N for N > 1, with A(1) =0
Key point: any algorithm with the following structures takes N log N time

public static void linearithmic(int N) {

if(N == 0) return;

linearithmic(N/2); // solve two problems
linearithmic(N/2); // of half the size
linear(N); // do a linear amount of work

A guaranteed N log N running time can be a liability. For example, there are methods that can
adapt to run in linear time in certain special situations, such as where there is a significant
amount of order in the file, or when there are only a few distinct keys. In contrast, the running
time of mergesort depends primarily on only the number of input keys and is virtually
dismissive to their order. Mergesort is a stable sort and this feature tips the balance in its favor
for applications where stability is the upmost importance. Competitive methods such as a
quicksort or heapsort are not stable. Various techniques to make such methods stable tend to
require extra space; whereas mergesort’s extra space requirement thus becomes less
significant if stability is a prime consideration.

To combine two ordered arrays a and b into an ordered array ¢, we use a for loop that puts an
element into c at each iteration. If a is exhausted, the element comes from a; and if items
remain in both, the smallest of the remaining elements in @ and b goes to ¢. This
implementation of merging assumes that the array c is disjoint (does not overlap or share
storage) from a and b.

static void mergeAB(ITEM[] c, int cl,
ITEM[] a, int al, int ar,
ITEM[] b, int bl, int br)
{ int i =al, j = bl;
for (int k = cl; k < cl + ar —al + br — bl + 1; k++) {

if (i > ar) { clk]l = bl[j++]; HE S
if (j > br) { clk]l = ali++]; H
c[k] = less(alil, b[jl) ? ali++] : bl[j++];

}
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Once we have a merging procedure in place, it’s not difficult to use that procedure as the basis
for a recursive sorting procedure. To sort a given file, we divide it in half, recursively sort the
two halves, and then merge them. A top-down mergesort is comparable to a top-down
management style, where a manager gets an organization to take on a big task by dividing it
into pieces to be solved independently by underlings. If each manager operates by simply
dividing the given task in half, then putting together the solutions that the subordinates
develop and passing the result up to a superior, the result is a process like mergesort. As an
example of a top-down mergesort, this basic implementation is a prototypical divide-and-
conquer recursive program. It sorts the array a[1],....,a[r] by dividing it into two parts
a[1],....,a[m] and a[m+1],.....,a[r], sorting them independently (via recursive calls), and merging
the resulting ordered subfiles to produce the final ordered result.

static void mergeAB(ITEM[] a, int 1, int r) {
if (r <= 1) ;
intm=(r + 1)/2;
mergesort(a, 1, m);
mergesort(a, m + 1, r);
merge(a, 1, m, r);

I
input: MERGESORTEZXAMPTLE
/ /\ \
two halves: MERGESOR | | TEXAMPTLE
sort left half: E E GM O R R S <== TEXAMPTLE
sort right half: E E GM O R R S ==> A EELMPTX
merge results: AEEEEGLM | | MOPRRSTHXKX
\ \ / /
merged: AEEEEGLMMOPRRSTHX

Every recursive program has a non-recursive analog that, although equivalent, may perform
computations in a different order. As prototypes of the divide-and-conquer algorithm-design
philosophy, nonrecursive implementations of mergesort are worth studying in detail. Consider
the sequence of merges done by the recursive algorithm. A file size of 15 numerical objects is
sorted by the following sequence of merges:

1-by-1 1-by-1 2-by-2 1-by-1 1-by-1 2-by-2 4-by-4
1-by-1 1-by-1 2-by-2 1-by-1 2-by-1 4-by-3 8-by-7

This order of the merges is determined by the recursive structure of the algorithm. However,
the subfiles are processed independently, and the merges can be done in different sequences.
A bottom-up mergesort consists of a sequence of passes over the whole file doing m-by-m
mergers, doubling 1 on each pass. The final subfile is of size m only if the file size is an even
multiple of m, so the final merge is an m-by-r merge, for some x less than or equal to m.
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static int min(int A, int B) {
(A<B) 2 A:B; }

static void mergesort(ITEM[] a, int 1, int r) {

if (r <= 1) ;

aux = new ITEM[a.lengthl];

for (intm=1; m<=r — 1; m = m+m)

for (int 1 = 1; i <= r —m; i += m+m)
merge(a, i, i+m, min(i+m+m-1, r));

We can also use insertion sorts for small subarrays. Mergesorts can also have too much
overhead for tiny subarrays. Ergo, we can create a cutoff to insertion sort for = 10 items:

private static void sort(Comparable[] a, Comparable[] aux,
int lo, int hi) {

if(hi <= lo + CUTOFF - 1) { // cut off to insertion sort
Insertion.sort(a, lo, hi);
return;

}

int mid = lo + (hi - lo) / 2;
sort(a, aux, lo, mid);
sort(a, aux, mid+1l, hi);
merge(a, aux, lo, mid, hi);

First subarray il
Second subarray il
Hmtmeme.mmmmmm
antil|
il
11
First half sorted il
_aall
ol
11
ol
Ll
g1 11

Second half sorted Jmmm— — —_— v 1111111
Result __..................mmmuulllllIIIIIIIIIIII[||||||||||||||||“““"““"l""""""“"“
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Hash Tables in Java

Hash tables in Java are versatile data structures that offer efficient key-value storage and
retrieval, making them invaluable for a wide range of applications, from data storage and
retrieval to algorithm optimization and performance improvement. Java provides the HashMap
and Hashtable classes for implementing hash tables, and they are widely used in Java
programming. Search algorithms are based on an abstract comparison operation, and search
algorithms that use hashing consist of two separate parts. The first step is to compute a hash
function that transforms the search key into a table address. Ergo, the second part of a hashing
search is a collision-resolution process that deals with such keys. One of the collision-resolution
methods that you will see in this guide use linked lists and as such immediately useful in
dynamic situations where the number of search keys is difficult to predict in advance. The
other two collision-resolution methods that you will see achieve fast search times on items that
are stored within a fixed array. Hashing is a good example of a time-space tradeoff. If there
were no memory limitation, then we could perform any search with only one memory access by
simply using the key as a memory address, as in key-indexed search.

Keys Indexes Key-value pairs
(records)

0

John Smith ", T ———» | Lisasmith [+1-555-8076]
872 "1 | John smith [ +1-555-1234|
873_/'1

Sam Doe 874 8 | sandra Dee |+1-555-9655|

e e 998

Il DIEE o9 ™ | sampoe [+1-555-5030

Hashing is a classical computer science problem: The various algorithms have been studied in
depth and are widely used. It is not unreasonable to expect to support the search and insert
symbol-table operations in constant time, independent of the size of the table.

implementation search* insert* delete* searcht insert! delete! ordered ops on keys
seq search (unordered list) N N N N N N equals()
binary search (ordered array) log N N N log N N N X compareTo ()
BST N N N log N log N VN X compareTo ()
2-3tree log N log N log N log N log N log N X compareTo ()
LLRB log N log N log N log N log N log N X compareTo ()

This expectation is the theoretical optimum performance for any symbol-table implementation,
but hashing is not a one-size-fits-all solution for two primary reasons. First, the running time
does depend on the length of the key, which can be a liability in practical applications with long
keys. Second, hashing does not provide efficient implementations for other symbol-table

operations, such as select or sort.
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The first problem to consider is the computation of the hash function, which transforms keys
into table addresses. This arithmetic computation is typically a straight forward process to
implement. If we have a table that can hold M items, then we need a function that transforms
keys into integers in the range of [0, M — 1]. The basic plan is to save items in a key-indexed
table (index is a function of the key)

e Computing the hash function
e Equality test: Method for checking whether two keys are equal

e Collision resolution: Algorithm and data structure to handle two keys that hash to the
same array index.

0:
1: |
hash('it")=3 . <y
> 3: it
gt " 4:
hash("times")=3
5:

To compute the hash function, the ideal goal is to scramble the keys uniformly
to produce a table index.

table
e Efficiently computable index
e Each table index equally likely for each key

(thoroughly researched problem, still problematic in practical applications)

All Java classes inherit a method hashCode (), returns a 32-bit int

e Requirement: if x.equals(y), then x.hashCode() == y.hashCode()

e Highly desirable: if !x.equals(y), then x.hashCode() !'= y.hashCode()
e Default implementation: Memory address of x

e Legal (but poor) implementation: Always return 17

e Customized implementations: Integer, Double, String, File, URL, Date, ...

e User-defined types: Users are on their own

x y

x.hashCode()  y.hashCode()

35



Here is a Java library implementation of hash code:

public final class Integer {

private final int value;
/] ... h Integers

public int hashCode() { return value; }

public final class Boolean {
private final boolean value;

/1l ... Bool
public int hashCode() { h ooleans

if(value) return 1231;
else return 1237;

public final class Double {
private final double value;

//

public int hashCode() { h Doubles

long bits = doubleToLongBits(value);
return (int) (bits © (bits >>> 32));

e convert to IEEE 64-bit representation
e xor most significant 32-bits with least significant 32-bits
e warning: -0.0 and +0.0 have different hash codes

o 00000000000000000000000000000000b =0.0

o 10000000000000000000000000000000b =-0.0

o 32 bit float

Treat string of length L as L-digit, base-31 number:
h = s[0]-31F 4. . +s[L—3] 312+
+s[L —2]-31' + s[L — 1] - 31°

public final class String {

private final char[] s; char Unicode
VAR
public int hashCode() {
int hash = 0; a 97
for(int i=0; i<length(); i++) b 98
hash = s[i] + (31 * hash); C 99

return hash;
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Horner's method: only L multiples/adds to hash string of length L

String s = "call";
s.hashCode( ) ; // 3045982 = 99%31"°3 + 97%31"2 +
// + 108*31"°1 + 108*31"0
// = 108 + 31*(108 + 31*(97 + 31%(99))

Implementing hash code for strings for performance optimization:

e Cache the hash value in an instance variable
e Return cached value

public final class String {

private int hash = 0; // cache of hash code
private final char[] s;
/0 coo

public int hashCode() {
int h = hash, i;
if(h != 0) return h; // return cached value
for(i = 0; i < length(); i++)
h s[i] + (31 * h);
hash = h; // store cache of hash code
return hash;

In summary, to use hashing for an abstract symbol-table implementation, the final step is to
extend the abstract type interface to include a hash operation that map keys into nonnegative
integers less than M, the table size. Here is the implementation:

static int hash(double v, int M) {
(int) Mx(v-s)/(t-s); }

completes the job for floating-point keys between the values s and ¢; for integer keys, we can
simply return v % M. If M is not prime, the hash function might return

(int) (.616161 * (double) v) % M

or the result of a similar integer computation such as:
(16161 * v) % M

All of the above functions for string keys, are respectable approaches that typically spread out
the keys and have served programmers well for years. Universal methods are a distinctive
improvement for string keys that provides random hash values.
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Understanding Radix in Java

In Java, "radix" typically refers to the base of a numbering system, such as binary (base 2),
decimal (base 10), or hexadecimal (base 16). The term "radix" is often used when working with
number representations other than the familiar base 10 decimal system. It's used in various
contexts, including when converting numbers between different bases or specifying the base
for formatting numbers. Here are some common uses for Radix in Java:

1. Radix in Number Formatting:
When formatting numbers in Java, you can specify the radix to display the numberin a
different base. The Integer.toString(int i, int radix) and
Long.toString (long 1, int radix) methods allow you to convert an integer
or long to a string representation in the specified radix. For example, to convert the
decimal number 10 to binary, you would use:

String binaryString = Integer.toString(10, 2);
This sets the radix to 2, resulting in the string "1010."

2. Parsing Numbers in Different Radices:
Java allows you to parse numbers from strings in different radices using methods like
Integer.parselnt(String s, int radix) and Long.parseLong(String s, int radix). For example,
to parse a binary string "1010" into an integer, you would use:

int decimalvValue = Integer.parseInt("1010", 2);
This sets the radix to 2, indicating that the input string is in binary representation.

3. Radix Constants:
Java provides constants for commonly used radices, such as Character.MIN_RADIX
(which is typically 2 for binary) and Character.MAX_RADIX (which is typically 36,
representing numbers using letters as well, e.g., hexadecimal). Here's an example that
demonstrates converting a number from one radix to another in Java:

public class RadixExample {
public static void main(String[] args) {

int decimalNumber = 10;
String binaryString = Integer.toString(decimalNumber, 2);
String hexadecimalString = Integer.toString(decimalNumber, 16);

" + decimalNumber);

+ binaryString);

" + hexadecimalString);

System.out.println("Decimal:
System.out.println("Binary:
System.out.println("Hexadecimal:

This code converts the decimal number 10 into its binary and hexadecimal representations
using the Integer.toString() method with different radices.
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When implementing radices, we can use tries for keys that are either a fixed number of bits or
are variable-length bitstrings. Tries are a search tree that allows us to use the bits of the keys
to guide the search. The idea is to store keys only at the bottom of the tree, in leaf nodes. The
resulting data structure has a number of useful properties and serves as the basis for several
effective search algorithms. In a trie, we keep the keys in the leaves of a binary tree. Ina
binary tree, a leaf is an internal node whole left and right links are both null. Keeping keys in
leaves instead of internal nodes allows us to use the bits of the keys to guide the search.

In a successful search for the key H = 01000 in this sample trie (top), we move left at the root
(since the first bit in the binary
representation of the key is 0), then right
(since the second bit is 1), where we find H,
which is the only key in the tree that begins
with 01. None of the keys in the trie begin
with 101 or 11; these bit patterns lead to
the two null links in the trie that are in the
non-leaf nodes. To insert | (bottom), we
need to add three non-leaf nodes:
e One corresponding to 01, with a null
link corresponding to 011
e One corresponding to 010, with a
null link corresponding to 0101
e One corresponding to 0100 with H
=01000 in a leaf on its left and / =
01001 in a leaf on its right

Each key in the trie is sorted in a leaf, on the path described by the leading bit pattern of the
key. Conversely, each leaf contains the only key in the trie that begins with the bits defined by
the path from the root to that leaf. Here is an implemented example of a trie search:

private ITEM searchR(Node h, KEY v, int d) {
if (h == null) null;
if (h.1l == null && h.r == null) {
if (equals(v, h.item.key()))
h.item; else null; }
if (bit(v, d) == 0)
searchR(h.1, v, d+1);
else searchR(h.r, v, d+1);
b
ITEM search(KEY key) {
searchR(head, key, 0); }

This code should be fairly straight forward to you. This method uses bits of the key to control
the branching on the way down the trie. Essentially it yields three possible outcomes:
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1. If the search reaches a leaf (with both links null), then that is the unique node in the trie
that could contain the record with key v, so we test whether that node does in fact
contain v (search hit) or some key whose leading bits match v (search miss).

2. If the search reaches a null link, then the parent’s other link must not be null, so there is
some other key in the trie that differs from the search key in the corresponding bit, and
we have a search miss.

3. The above code example assumes the final outcome, which is that the keys are distinct
and (if the keys may be of different lengths) that no key is a prefix of another. The item
member is not used in non-leaf nodes.

The next portion of understanding radices is the insertion of a key into a trie. However, we
must first perform the search, as usual. If the search ends on a null link, we replace that link
with a link to a new leaf containing the key. But if the search ends on a leaf, we need to
continue down the trie, adding an internal node for every bit where the search key and the key
that was found agree, ending with both keys in leaves as children of the internal node
corresponding to the first bit position where they differ. Here is an example of a trie insertion:

Node split(Node p, Node ¢, int d) {
Node t = new Node (null);
KEY v = p.item.key(), w = q.item.key();
(bit(v, d)*2 + bit(w, d)) {
case 0: t.1 split(p, q, d+1); break;

case 1: t.1 = p; t.r = qg; break;

case 2: t.r = p; t.1l = qg; break;

case 3: t.r = split(p, g, d+1); break;
b

t;

}
private Node insertR(Node h, ITEM x, int d) {
if (h == null)
new Node(x);
if (h.1l == null && h.r == null)
split(new Node(x), h, d);

if (bit(x.key(), d) == 0)
h.l = insertR(h.1, x, d+1);
else h.r = insertR(h.r, x, d+1);
h-

I
void insert(ITEM x) {
head = insertR(head, x, 0); }

Do you see what is happening in this code? We search, then distinguish the two cases that can
occur for a search miss. If the miss was not on a leaf, then we replace the null link that caused
us to detect the miss with a link to a new node. If the miss was on a leaf, then we use a method
split to make one new internal node for each bit position where the search key and the key
found agree, finishing with one internal node for the leftmost bit position where the keys differ.
The switch statementin split converts the two bits that it is testing into a number to
handle the four possible cases. If the bits are the same (case 00, =0or 11, = 3), then we
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continue splitting; if the bits are different (case 01, =1 or 10, = 2), then we stop splitting. We
do not access null links in leaves, and we do not store items in non-leaf nodes, so we could save
space by using a pair of derived classes to define nodes as being one of these two types.

Graph Algorithms Visually Explained

In Data Structures & Algorithms, graphing algorithms are a pivotal learning point in computer
science and carries over into preparing you for any potential steps that you may take into
machine learning. This is one more example of where Data Structures & Algorithms is an
important subject to study in the field of computer science. Graphs serve real-world
applications such as modeling and capturing data with web pages and links, transportation and
logistics, finance and fraud detection, biology and bioinformatics, and even game development.
If you have relational objects/nodes, they can be represented using graphs.

In computer science and mathematics, a graph is a data structure consisting of a set of vertices
(or nodes) connected by a set of edges (or arcs). Graph algorithms are fundamental in
computer science and have wide-ranging applications including computer networking,
recommendation systems, operations research, and scientific computing. It's important to
understand that there are multiple types of graphs created in different formats (even color-
coded) depending on the purpose they serve and the type of data they represent. Graph
algorithms are used to perform various operations on graphs including:

e Traversal - systematically visiting the vertices (nodes) and edges of a graph. Depth-First
Search (DFS) and Breadth-First Search (BFS)

e Topological Sorting - linearly order the vertices (nodes) of a directed acyclic graph (DAG)

e Minimum Spanning Tree - MSTs find applications in various fields, including network
design, transportation, and clustering

e Shortest Path - used to find the shortest path between two vertices (nodes) in a graph

e Connectivity - refers to the property of determining whether there is a path or a
connection between two vertices (nodes) in a graph

e Matching - a set of edges in a graph such that no two edges share a common vertex

e Graph Coloring - involves assigning colors to the vertices of a graph in such a way that
no two adjacent vertices share the same color

e Cluster Detection - identifies groups of nodes (vertices) within a graph that are often
referred to as clusters or communities; revealing hidden structures, relationships, and
patterns in the data
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We can assume that a vertex can have a name and can carry other associated information.
Similarly, words like arc, edge, and link are all widely used by mathematicians to describe the
abstraction embodying a connection between two vertices, but we consistently use edge when
discussing graphs and link when discussing references in Java data structures.

Example: When there is an edge connecting two vertices, we say that the vertices are adjacent
to one another and that the edge is incident on both vertices. The degree of a vertex is the
number of edges incident on it. We use the notation v — w to represent an edge that
connects v and w; the notation w — v is an alternative way to represent the same edge.

Kruskal’s Algorithm for finding Minimal Spanning Trees (MST)

A subgraph is a subset of a graph’s edges (and associated vertices) that constitutes a graph.
Many computational tasks involve identifying subgraphs of various types. If we identify a
subset of a graph’s vertices, we call that subset, together with all edges that connect two of its
members, the induced subgraph associated with those vertices. Per the above example, we
can draw a graph by marking points for the vertices and drawing lines connecting them for the
edges. A drawing gives us intuition about the structure of a graph; but it’s also true to say that
this intuition can be misleading, because the graph is defined independently of its
representation.
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Here is an example of why this is. The two graph drawings shown here, and the list of edges
represents the same graph because the graph is only its (unordered) set of vertices and its
(unordered) set of edges (pairs of vertices)—nothing more. A path in a graph is a sequence of
vertices in which each successive vertex (after the first) is adjacent to its predecessor in the
path. In a simple path, the vertices and edges are distinct. A cycle is a path that is simple
except that the first and final vertices are the same.

O PO @
0-5 5-4 7-8
o 4-3 0-2 9-12
0-1 11-12 5-3
9 e 9-12 9-10
6-4 0-6

The possible vertex placements, edge-drawing styles, and aesthetic constraints on the drawing
are boundless. A planar graph is one that can be drawn in the plane without any edges
crossing. An acyclic connected graph is called a tree. A set of trees is called a forest. A
spanning tree of a connected graph is a subgraph that contains all of that graph’s vertices and
is a single tree. A spanning forest of a graph is a subgraph that contains all of that graph’s
vertices and is a forest.

Graph Terminolgy

s

vertex: black dot; edge: line; path: green lines (len=4);
cycle: blue lines (len=5); 3 connected components;
red vertex has degree 4
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However, it suffices to consider a graph simply as a set of edges, we see other representations
that are particularly suitable as the basis for graph data structures here:

These five above graphs with all edges present are known as complete graphs. We define the
counterpart of a graph G by starting with a complete graph that has the same set of vertices as
the original graph and then removing the edges of GG. The union of two graphs is the graph
induced by the union of their sets and edges. The union of a graph and its counterpart is a
complete graph. The above illustration demonstrates with every vertex connected to every
other vertex, have 10, 15, 21, 28, and 36 edges (left to right). Every graph with between 5 and
9 vertices (there are more than 68 billion possible graphs) is a subgraph of one of these graphs.
Placing the vertices of a given graph on the plane and drawing them and the edges that connect
them is known as graph drawing. All graphs that have } vertices are subgraphs of the
complete graph that has V' vertices. The total number of different graphs that have V' vertices
is 2V('=1/2 (the number of different ways to choose a subset from the V(V — 1)/2 possible
edges). A complete graph is called a clique. Sparse and dense graphs are two fundamental
subjects that describe the density of edges in a graph data structure.

The primary difference between them results from the number of edges they contain relative
to the number of vertices. Understanding this difference is essential because it can influence
the choice of data structures and algorithms used to represent and process these graphs
proficiently. Knowing whether a graph is sparse or dense is generally a key factor in selecting
an efficient algorithm to process the graph. For example, we might develop one algorithm that
takes V2 steps and another that takes about E Ig E steps. These formulas tell us that the
second algorithm would be better for sparse graphs, whereas the first would be preferred for
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dense graphs. The two above examples of sparse and dense graphs are also referred to as
Bipartite graphs. This means all edges in this graph connect odd-numbered vertices with even-
numbered ones, so therefore it is bipartite. The graph on the right makes the property evident.
These formulas tell us the second algorithm would be better for sparse graphs, whereas the
first would be preferred for dense graphs. When analyzing graph algorithms, assume that V /E
is bounded above by a small constant, so it’s reduced expressions suchas V(V + E) to VE. As
a part of graph representation we can implement the API.

GraphUndirected
GraphUndirected(V : int) /I create an empty graph with V vertices
addEdge(v : int, w : int) // add an edge v-w
adj(v : int) : Iterable<Integer> | // vertices adjacent to v
V() :int // number of vertices
EQ) :int /I number of edges

// degree of vertex v in Graph G

public static int degree(Graph G, int V) {
int degree = 0;
for(int w : G.adj(v)) degree++;
return degree;

The following is a graph representation of an edge list. Maintain a list of edges as pairs of
vertices.

Q edges = [(0,1), (0,2), (0,5),

e‘ (0,6), (3,4), (3,5),

0 @ Q (4,5), (4,6), (7,8),
(9,10), (9,11),
6 o e . e (9,12), (11,12)]

Note: 0, 1 implies 1, O is also an edge.
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This graph example is how you represent an adjacency matrix by maintaining a two-
dimensional V by Vboolean array; for each edge v — w in graph:

®
O: .

1) (oL 1 x
‘u” 2: X

3: .

OO0 D@ b,
":’ 5: X

6: X

"i%l'#‘l’ T: .
8
o

There are two entries for each edge and we can implement a DFS as follows:

public class Graph {
private final int V;
private Bag<Integer>[] adj;

public Graph(int V) {

// create empty graph with V vertices

this.V = V;

adj = (Bag<Integer>[]) new Bag[V];

for(int v = 0; v < V; v++)
adj[v] = new Bag<Integer>();

public void addEdge(int v, int w) {

// add edge v-w (parallel edges and self-loops

adj[v].add(w);
adj[w].add(v);

1

// iterator for vertices adjacent to v

public Iterable<Integer> adj(int v) {

return adj[v];

2

adj [v] [w] = adj [w] [v] = true.

3

// adj lists

4
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Conclusion

This concludes my technical guide on Data Structures & Algorithms with Java. At nothing else,
my hope is that this guide provided a detailed glimpse into the theoretical and conceptual
methodologies of writing programs for software development in the Java programming
language. | will say, after completing COS 265 - Data Structures & Algorithms at Taylor
University, | couldn’t be happier to get it behind me, but I’'m also glad that my department
required it for my unique computer science degree. There was a tremendous amount of work
involved in that course and you can only really appreciate that type of discipline when you’re
facing the hurdle head on. Although, as mentioned in my previous guides, the information |
provided was only scraping the surface, and the same is said for this guide as well. This guide
also served as a ‘reiteration-to-memory’ for myself of what | had just completed, although
extremely watered down with my notes, and examples from several labs. Obviously, the
subject of Data Structures & Algorithms covers a considerable amount of more information and
tasks within one semester of work. But for the growing number of people who question having
to take this kind of course, or maybe are not sure of the variance in content with this kind of
course, hopefully this guide provided the insight you were perhaps looking for. All diagrams,
code samples, and notes were created and provided by me, pulled from my course and lab
notes and converted digitally for the purpose of this guide. If you have any questions about this
guide or any other general inquiries, you can email me at technologicguy@gmail.com

Resources Used:
e Drozdek, Adam. Data Structures & Algorithms in Java — 2001
o Kleinberg, Jon. Algorithm Design — 2005
e Oracle.com
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